Difference between revisions of "2010 AMC 12B Problems/Problem 16"
m (→Solution 1) |
|||
Line 1: | Line 1: | ||
+ | {{duplicate|[[2010 AMC 12B Problems|2010 AMC 12B #16]] and [[2010 AMC 10B Problems|2010 AMC 10B #18]]}} | ||
+ | |||
== Problem 16 == | == Problem 16 == | ||
Positive integers <math>a</math>, <math>b</math>, and <math>c</math> are randomly and independently selected with replacement from the set <math>\{1, 2, 3,\dots, 2010\}</math>. What is the probability that <math>abc + ab + a</math> is divisible by <math>3</math>? | Positive integers <math>a</math>, <math>b</math>, and <math>c</math> are randomly and independently selected with replacement from the set <math>\{1, 2, 3,\dots, 2010\}</math>. What is the probability that <math>abc + ab + a</math> is divisible by <math>3</math>? |
Revision as of 20:46, 26 May 2020
- The following problem is from both the 2010 AMC 12B #16 and 2010 AMC 10B #18, so both problems redirect to this page.
Problem 16
Positive integers , , and are randomly and independently selected with replacement from the set . What is the probability that is divisible by ?
Solution 1
We group this into groups of , because . This means that every residue class mod 3 has an equal probability.
If , we are done. There is a probability of that that happens.
Otherwise, we have , which means that . So either or which will lead to the property being true. There are a chance for each bundle of cases to be true. Thus, the total for the cases is . But we have to multiply by because this only happens with a chance. So the total is actually .
The grand total is
Solution 2 (Minor change from Solution 1)
Just like solution 1, we see that there is a chance of and chance of
Now, we can just use PIE (Principals of Inclusion and Exclusion) to get our answer to be
-Conantwiz2023
See also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.